73 research outputs found

    Hybrid Optical and Wireless Sensor Networks

    Get PDF

    Multifunctional photonic integrated circuit for diverse microwave signal generation, transmission and processing

    Get PDF
    Microwave photonics (MWP) studies the interaction between microwave and optical waves for the generation, transmission and processing of microwave signals (i.e., three key domains), taking advantages of broad bandwidth and low loss offered by modern photonics. Integrated MWP using photonic integrated circuits (PICs) can reach a compact, reliable and green implementation. Most PICs, however, are recently developed to perform one or more functions restricted inside a single domain. In this paper, as highly desired, a multifunctional PIC is proposed to cover the three key domains. The PIC is fabricated on InP platform by monolithically integrating four laser diodes and two modulators. Using the multifunctional PIC, seven fundamental functions across microwave signal generation, transmission and processing are demonstrated experimentally. Outdoor field trials for electromagnetic environment surveillance along an in-service high-speed railway are also performed. The success to such a PIC marks a key step forward for practical and massive MWP implementations.Comment: 17 page

    A hybrid EDA for load balancing in multicast with network coding

    Get PDF
    Load balancing is one of the most important issues in the practical deployment of multicast with network coding. However, this issue has received little research attention. This paper studies how traffic load of network coding based multicast (NCM) is disseminated in a communications network, with load balancing considered as an important factor. To this end, a hybridized estimation of distribution algorithm (EDA) is proposed, where two novel schemes are integrated into the population based incremental learning (PBIL) framework to strike a balance between exploration and exploitation, thus enhance the efficiency of the stochastic search. The first scheme is a bi-probability-vector coevolution scheme, where two probability vectors (PVs) evolve independently with periodical individual migration. This scheme can diversify the population and improve the global exploration in the search. The second scheme is a local search heuristic. It is based on the problem-specific domain knowledge and improves the NCM transmission plan at the expense of additional computational time. The heuristic can be utilized either as a local search operator to enhance the local exploitation during the evolutionary process, or as a follow-up operator to improve the best-so-far solutions found after the evolution. Experimental results show the effectiveness of the proposed algorithms against a number of existing evolutionary algorithms

    Sensitivity Enhancement of Strain Sensing Utilizing a Differential Pair of Fiber Bragg Gratings

    Get PDF
    In strain measurement applications, the matched fiber Bragg gratings (FBG) method is generally used to reduce temperature dependence effects. The FBG parameters have to be designed to meet the requirements by the particular application. The bandwidth and slope of the FBG has to be balanced well, according to the measurement range, accuracy and sensitivity. A sensitivity enhanced strain demodulation method without sacrificing the measurement range for FBG sensing systems is proposed and demonstrated utilizing a pair of reference FBGs. One of the reference FBGs and the sensing FBG have almost the same Bragg wavelength, while the other reference FBGs has a Bragg wavelength offset relative to the sensing FBG. Reflected optical signals from the sensing FBG pass through two reference FBGs, and subtract from each other after the detection. Doubled strain measurement sensitivity is obtained by static rail load experiments compared to the general matched grating approach, and further verified in dynamic load experiments. Experimental results indicate that such a method could be used for real-time rail strain monitoring applications

    Cost-effective photonic super-resolution millimeter-wave joint radar-communication system using self-coherent detection

    Full text link
    A cost-effective millimeter-wave (MMW) joint radar-communication (JRC) system with super resolution is proposed and experimentally demonstrated, using optical heterodyne up-conversion and self-coherent detection down-conversion techniques. The point lies in the designed coherent dual-band constant envelope linear frequency modulation-orthogonal frequency division multiplexing (LFM-OFDM) signal with opposite phase modulation indexes for the JRC system. Then the self-coherent detection, as a simple and low-cost means, is accordingly facilitated for both de-chirping of MMW radar and frequency down-conversion reception of MMW communication, which circumvents the costly high-speed mixers along with MMW local oscillators and more significantly achieves the real-time decomposition of radar and communication information. Furthermore, a super resolution radar range profile is realized through the coherent fusion processing of dual-band JRC signal. In experiments, a dual-band LFM-OFDM JRC signal centered at 54-GHz and 61-GHz is generated. The dual bands are featured with an identical instantaneous bandwidth of 2 GHz and carry an OFDM signal of 1 GBaud, which help to achieve a 6-Gbit/s data rate for communication and a 1.76-cm range resolution for radar

    Single-end hybrid Rayleigh Brillouin and Raman distributed fibre-optic sensing system

    Get PDF
    Backscattered lightwaves from an optical fibre are used to realise distributed fibre optic sensing (DFOS) systems for measuring various parameters. Rayleigh, Brillouin, and Raman backscattering provide different sensitivities to different measurands and have garnered the attention of researchers. A system combining the three principles above can effectively separate the measured strain and temperature completely as well as provide measurements of both dynamic and static parameters. However, the combined system is extremely complicated if the three systems are independent of each other. Hence, we propose a single-end hybrid DFOS system that uses two successive pulses to realise the Brillouin amplification of Rayleigh backscattering lightwaves for combining Rayleigh and Brillouin systems. A 3-bit pulse-coding method is employed to demodulate the Raman scattering of the two pulses to integrate Raman optical time-domain reflectometry into the hybrid system. Using this hybrid scheme, a simultaneous measurement of multiple parameters is realised, and a favourable measurement accuracy is achieved

    Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses

    Get PDF
    Different approaches to implement unipolar Golay coding in Brillouin optical time-domain analysis based on a differential pulse pair (DPP) are investigated. The analysis points out that dedicated post-processing procedures must be followed to secure the sharp spatial resolution associated with the DPP method. Moreover, a novel hybrid Golay–DPP coding scheme is proposed, offering 1.5 dB signal-to-noise ratio improvement with respect to traditional unipolar Golay coding, while halving the measurement time, constituting a 3 dB overall coding gain enhancement. Proof-of-concept experiments validate the proposed technique, demonstrating a 50 cm spatial resolution over a 10.164 km long sensing fiber with a frequency uncertainty of 1.4 MHz

    Test Verification and Application of a Longitudinal Temperature Force Testing Method for Long Seamless Rails Using FBG Strain Sensor

    Get PDF
    In order to evaluate the health status of continuous welded rail accurately, a deduction on the FBG sensing principle has been made with regard to the temperature variation of test specimens under different constraint conditions. A long seamless rail testing solution and its on-site application are designed based on this deduction. According to the verification experiments of sensing principle inside, the effect of the reference temperature on the FBG temperature and strain sensitivity coefficient within −30°C~30°C is not higher than 0.05%; the maximum relative error of single point between the tested and theoretical results of test specimen under constrained condition is 3.2%; and the maximum relative error of slopes of fitted straight lines based on the tested and theoretical results within the entire test temperature range is 2.3%, verifying the deduced FBG sensing principle with regard to the test specimen under constrained condition. The maximum error of the longitudinal temperature force between the on-site tested results and calculated results in long seamless rails is only 6.1 kN, the corresponding rail temperature variation is 0.3°C, and the accumulated error is controllable within 5%
    • …
    corecore